ol

AD-A056 902 MITRE CORP BEDFORD MASS F/6 9/2
IMPLEMENTATION OF A SECURE DATA MANAGEMENT SYSTEM FOR THE SECUR=-ETC(U)
JUL 78 B N WAGNER F19628=78=C~0001

UNCLASSIFIED MTR=3524 . ESD-TR=-78-154 NL

I QF |
ABse 902

END
DATE
FILMED

9-78

DDC

By e

2

MTR-~-3524

s
22 A

o AT
¥ -4
el

ESD-TR-78-154 Ri0F aul

IMPLEMENTATION OF A SECURE DATA
MANAGEMENT SYSTEM FOR THE SECURE
UNIX OPERATING SYSTEM

BY B. N. WAGNER

DA056902
|

JULY 1978

- Prepared for
o-
1 (@)
‘ (b
DEPUTY FOR TECHNICAL OPERATIONS
wul ELECTRONIC SYSTEMS DIVISION
« = AIR FORCE SYSTEMS COMMAND
| — R UNITED STATES AIR FORCE
z Hanscom Air Force Base, Massachusetts
< é
i
|
i
{ Project No. 5720
i Prepared by
1 3 THE MITRE CORPORATION
| i Approved for public relecse; Bedford, Massachusetts
j I —— Contract No. F19628-78-C-0001
| 1
3 |
i 8 07 27 030
)

When U.S. Government drawings, specifications,
or other data are used for any purpose other
than a definitely related government procurement

operation, the government thereby incurs no
responsibility nor any obligation whatsoever; and
the fact that the government may have formu-
lated, furnished, or in any way supplied the said
drawings, specifications, or other data is not to be
regarded by implication or othe-wise, as in any
manner licensing the holder or any other person
or corporation, or conveying any rights or per-
mission to manufacture, use, or sell any patented
invention that may in any way be related thereto.

Do not return this copy. Retain or destroy.

REVIEW AND APPROVAL

This technical report has been reviewed and is approved for publication,

WILLIAM R. PRICE, Captain, USAF CH Colonel, USAF
Technology Applications Division Chief, T'echnology Applications Division

FOR THE COMMANDER

RICHARD P. RUBRECHT, Lt Colonel, USAF
Chief, Field Support Division

Directorate of Computer Systems Engineering
Deputy for Technical Operations

so——

UNCLASSIFIED

'SECURITY LLASSIFICATION OF THIS PAGE (When Data Entered)

/ =7) READ INSTRUCTION
F // REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
= Q NUMBER i / 2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
ESD-:‘TR-78-154 {
,/ V4 W',_._._A_ e . . <~ gy 8. TYPE OF REPORY & PERIOD COVERED

IMPLEMENTATION OF A SECURE DATA
MANAGEMENT SYSTEM FOR THE SECURE [

UNCLASSIFIED

1Sa. DECL ASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release: distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side If nacessary and ldentify by block number)

INGRES
RELATIONAL DATA BASE MANAGEMENT

SECURITY
UNIX % tm (trademark)

ABSTRACT (Continue on reverse side If necessary and identify by block number)
A secure data management system that achieves a multilevel capability for building and
accessing relations has been implemented to run on the Secure UNIX Operating System
for the DEC PDP-11/45. The secure DMS is an adaptation of INGRES,ya relational
DMS developed at the University of California, Berkeley. “This paper addresses the
effect of multilevel security on the design of the INGRES data base system and its user
interface, including implementation details and an evaluation »f the system. _

or "~ FERRORMING ORG, REPORT BER
UNIX OPERATING SYSTEM o : { , 1M TR-35%4 RT pm
7. AUTHOR(s) ; D) TRACT OR GRANT NUMBER(S)
R Ty 1 { A, B ——
LB.N./Wagner“i \ L’w F19628 78-0-0091 (il
9. PER_:‘gﬁﬁTNG ORGANIZATION NAME AND ADDRESS '0 ::gg'zAwozkksﬁsrTTszo’JEECT TASK
The MITRE Corporation ;
P.O. Box 208 o Project No. 5720
Bedford, MA 01730 ol bkt
11, CONTROLLING OFFICE NAME AND ADDRESS rod 12. REPORT DATE
Deputy for Technical Operations et JULEEET8 \ s
Electronic Systems Division, AFSC NGWSERWOF PABES A s)
Hanscom Air Force Base, MA 01731 LIESY NN
4. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Otlice) 15. SECURITY CLASS. (olr s report)

4 AN re~ A W | e
oD |:2:'fn 1473 eoiTion oF ' NOV aisﬁouny ¢ "'ﬂNGLASSm

S pr
] z x’* A L f/ SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

ACKNOWLEDGMENTS

This report has been prepared by The MITRE Corporation under
Project No. 5720. The contract is sponsored by the Electronic Systems
Division, Air Force Systems Command, Hanscom Air Force Base,
Massachusetts.

oY an Al "“"‘.‘lvl \‘“
gAY

TABLE OF CONTENTS

LIST OF ILLUSTRATIONS

SECTION I

"SECTION II

SECTION III

SECTION 1V

SECTION V

SECTION VI

REFERENCES

INTRODUCTION

OBJECTIVE
BACKGROUND
TASK APPROACH

SECURE UNIX OPERATING SYSTEM

OVERVIEW
STRUCTURE OF SECURE UNIX FILE SYSTEM

INGRES DATA BASE MANAGEMENT SYSTEM

INTRODUCTION

STRUCTURE OF RELATIONAL DATA BASES
DESCRIPTION OF INGRES DBMS

INCOMPATIBILITIES OF INGRES WITH SECURE UNIX

Setuid Concept
System Calls

SECURITY LEVELS FOR THE INGRES DBMS

INTRODUCTION
DESIGN OF SECURE INGRES DATA BASE SYSTEM

USER INTERFACE

Overview
Secure INGRES Requirements

IMPLEMENTATION DETAILS

IMPLEMENTATION OVERVIEW
MODIFICATIONS TO INGRES CODE

CONCLUSION

UNANNONHC. T
JUSTIICA!

BY
B 7

11
11
11
13
18

18
19

22
22
22
23

23
24

28

28
28

35

37

LIST OF ILLUSTRATIONS

Figure Number

Sample Relationship Between Relations

INGRES Process Structure

INGRES File Structure Layout

Discretionary Access Modes for Secure INGRES
Object Files

Example of Creating Secret Relation from Secret
and Unclassified Relations

Program Sizes of INGRES and Secure INGRES

SECTION I

INTRODUCTION

OBJECTIVE

Security kernel technology has advanced to a stage where
prototypes are being built and evaluated. The addition of a data
base management system to a secure operating system creates a
testbed to identify and evalutate key technical issues in secure
data management system technology.

Applying these concepts, the goal of this project was to choose
a relational data base management system that lends itself for
implementation on a secure minicomputer and to re-design such a
system to incorporate Department of Defense security policies and
controls. This paper addresses the implementation of a secure data
base management system and the effect of kernel-enforced security
constraints on the user interface. The performance of the system in
the secure environment, though not a key issue, is another area of
study. The results from this work will be relevant to such Air
Force applications as TAC’s Automated Combat Intelligence Center
concept and other C3 (Communications, Command, and Control)
developments.

BACKGROUND

A prototype Secure UNIX Operating System for the Digital
Equipment Corporation PDP=11/45 was implemented at the MITRE
Corporation under the sponsorship of ESD and DARPA Secure UNIX
is the system on which the secure data management system will run.
The user interface of the MITxt Secure UNIX is similar to the
original UNIX Operating System, designed at Bell Telephone
Laboratories for Digital Equipment Corporation computer systems (in
particular, the PDP-11/40, 11/45, and 11/70). The Secure UNIX
system incorporates kernel security controls that evolved from the
brassboard security kernel technology. The brassboard kernel was
developed to support a demonstration special-purpose tactical fusion
scenario, which utilizes a primitive data management capability
f1,2].

The Air Force Electronic Systems Division sponsored several
research and development efforts in the design, specification, and
validation of secure data base management systems. Of primary
importance are the contributions from Marvin Shaefer and Thomas

5

Hinke of System Development Corporation and from a team at L.P.
Sharp Associates Ltd. The SDC effort concerned the design of a
secure relational data base management system that interfaces with
the multilevel environment provided by the secure Multics Operating
System. In the DMS model, although problems with the secure Multics
functions for data creation, deletion, and process synchronization
had not been thoroughly resolved, the designers concluded that a
relational data base could comfortably exist within the multilevel
environment [3]. 1.P. Sharp Associates Ltd. investigated the design
of kernel primitives that would support the implementation of a
family of secure data management systems [4]. The resulting
specifications for the primitives were proven [5] to conform to a
model for a protected DMS [6]. The I.P. Sharp study recommended
that security levels be assigned per relation. Both of these
studies helped to identify and clarify the key technical issues in
secure data base management technology.

Under ESD sponsorship, several projects attempted to evaluate
the effect of security on the user interface for specific
applications. In particular, the Air Force Data Services Center
(AFDSC) needed a large scale multilevel secure computer that would
allow users at two different security levels the ability to
simultaneously access classified information. The Multics Operating
System was enhanced to operate in the AFDSC’s two-level (Secret and
Top Secret) environment [7]. The appearance of the system to users
remained almost the same as current Multics. With the addition of
access levels, users needed to login at the highest access level of
information in use.

The Military Message Experiment (MME), sponsored by DARPA and
the Navy, is also concerned with the impact of multilevel security
on a usable operator interface (8,9]. The MME project is
evaluating a computer-aided message-handling system in a multilevel
environment. This system is similar to a transaction-oriented data
base management system. The experiment resulted in the development
of a multilevel terminal to store and display information at
multiple security levels. The terminal has distinct storage areas
represented as windows on the display. Each window may have a
separate classification, independent of the other windows.

In the current military message system, a user must be able to
view information at one level, while composing or editing a message
at another level. The concept of a multilevel terminal enhances the
user interface by allowing a more direct interaction to occur
between a user and the message system. Using the multilevel
terminal, other security-related issues were evaluated such as

St

window structure, security confirmation, trusted job interaction,
and effective methods to maintain user awareness of data
classification levels.

TASK APPROACH

The aim of this task is to coalesce an existing data base
management system with the technology acquired from the previous
studies on security kernels and secure data management systems, in
order to identify and address the basic technical issues. The
resulting implementation provides a means for assessing the user
interface and performance in the multilevel environment.

In the field of data base management, several systems exist
which could be candidates for the secure prototype DMS system. The
IBM Watson Research Center’s "Query-by-Example" [10], Stanford
Research Institute’s LADDER [11], INGRES developed at the University
of California at Berkeley [12,13,14,15,16], and ZETA at the
University of Toronto are sophisticated query languages suitable for
a relational DMS. The INGRES (Interactive Graphics and Retrieval)
System was chosen as the system to be implemented for study, because
it would be the most easily adapted to run on the Secure UNIX
system. INGRES is designed to run on the UNIX Operating System.

The INGRES program modules are coded entirely in "C", a powerful,
structured programming language, in which the UNIX Operating System
is also written.

On a user level, INGRES has the advantage of being a relatiomal
system, allowing for diversified and sophisticated methods of
retrieving and updating data without complex query statements. The
query language of INGRES is called QUEL and consists of simple
commands, sometimes terse, for accessing information in a data base.
A user need not be concerned how data structures are implemented or
what algorithms are operating on the stored data.

A main concern, when adapting INCRES to run in the environment
provided by Secure UNIX, was the differences between the two UNIX
systems that could affect the INGRES system software. To the credit
of the Secure UNIX designers, the changes to the UNIX system
software had a minor impact on application programs using the
software. Briefly, the incompatibilities involve the removal of the
"super-user" feature, non-support of the "setuid" concept, and the
elimination of the inode structure. Each of these changes
influenced the design of the Secure INGRES system and will be
discussed in Section III of this report.

In the design and implementation of the Secure INGRES prototype
system, two tasks can be identified:

a. the adaptation of INGRES to run under the Secure UNIX
Operating System, assuring its compatibility in a secure
environment ;

b. the achievement of a true multilevel capability in building

and accessing relations.

Descriptions of Secure UNIX and the INGRES DBMS are presented
in Section II and Section III respectively. From these brief
tutorials, a reader should have a better understanding of security
in the UNIX Operating System and the concept of a relational data
base system applied to INGRES. The design of the secure data base
system and the user interface for the system are described in
Section IV; the next section, Section V, contains a discussion of
the specific modifications to the INGRES code. Concluding remarks
about performance, user interaction, and an overall evaluation are
presented in Section VI.

SECTION 11

SECURE UNIX OPERATING SYSTEM

OVERVIEW

As stated earlier, INGRES is implemented to run on the UNIX
Operating System. UNIX is a general-purpose, multi-user,
interactive operating system for the DEC PDP~11 series of computers.
The design of the system employs computer technology that has been
used in the MULTICS and TENEX operating systems. The UNIX system is
structured around a hierarchical file system, that includes
compatible file, device, and interprocess input/output,
initialization of asynchronous processes, and a sophisticated set of
applications software [17].

The secure prototype model of UNIX is designed to incorporate
security and integrity controls without altering the basic UNIX
interface between system software and user application software.
UNIX supports a discretionary access policy to physically protect
data in its file system; additionally, the security kernel of Secure
UNIX addresses data protection by enforcing a non-discretionary
security policy as defined in military systems.

STRUCTURE OF SECURE UNIX FILE SYSTEM

Similar to the UNIX system, Secure UNIX also supports a tree-
structured file system where each file is either a directory, data
file, or special file. Special files exist for each device on the
system and are defined so that operations on the device are similar
to data file procedures. A directory provides the mapping between
the names of files and the files themselves, thus forming an
extended structure of the file system. Descriptive information
about the files is also found in the directory. All files have
access levels, non-discretionary (mandatory) and discretionary,
which the system checks when the file is referenced. The access
level of a directory is specified by a qualified user when the
directory is created. The data files in a directory have the same
mandatory access level as the directory.

To a user, operations on the secure file system run identically
to file manipulations under UNIX. In creating a new directory, a
user must adhere to the security properties established for a secure
system [18]. For example, under Secure UNIX, a user can create a

9

v

directcry at a higher security level than he is logged in, but, in
order to write into that directory, ie., to create a data file, the
user must be logged in at the security level of the directory.

e

it i

j
|
b
j

10

SECTION 111 i

INGRES DATA BASE MANAGEMENT SYSTEM

INTRODUCTION

. An important concept in the design of INGRES is that it is
modeled around a relational data base. The advantages of a
relational model have been discussed in the literature [19,20]. The
designers of INGRES felt that a relational model would provide a
high degree of data independence and a procedure-free facility for
incorporating such functions as data definition, retrieval, update,
access control, support of views, and integrity protection. In
order for a comprehensive understanding of the design of INGRES, an
introduction to a relational data base is presented, defining the
structure and the functions that comprise the system.

STRUCTURE OF RELATIONAL DATA BASES

A primary consideration of a data management system is the
handling of data elements or sets of elements and their inter-
relationships. A relation may be represented as a table or matrix
of data elements in rows and columns. Each row in a relation is
called a tuple; each column consists of data elements related to a
defined domain [21]. A domain has a specific format, that defines
the width of the domain, meaning the number of positions for that
column of information, and the type of information found in the
domain, such as character or numeric.

A relationship exists between relations when tuples in one
relation can be correlated with tuples in another relation. A query
language is used to define the relationship and display the results
of a query to the user. The purpose of a query in a relational DMS
is to create a new relation containing information derived from one
or more existing relations. Figure 1 illustrates a sample
relationship between the relation "Officers" and the relation
"Personnel Addr'". The new relation called "Officers Addr" contains
the results of a query to find the addresses of the officers.

Views and integrity protection are operations which enhance the
functionality of a relational data base system. A view is a method
of creating a relation by executing a saved set of query operatiomns
on an existing relation. The query operations are saved as the view
definition. Subsequent views of a relation may be created by
executing the view definition.

11

RELATION : OFFICERS
DOMAINS : NAME (TYPE = CHARACTER, LENGTH = 25)
RANK (TYPE = CHARACTER, LENGTH = 15)
SERIAL-NO (TYPE = NUMERIC , LENGTH < 232 OR 4 BYTES)

TUPLES IN OFFICERS RELATION:

NAME RANK SERIAL-NO
GEORGE F. BROWN GENERAL 975402
HAROLD W. GLENN LIEUTENANT 132884
JAMES J. SMITH COLONEL 546297

SAMPLE INGRES QUERY FOR CREATING RELATION AND ADDING TUPLES:
create officers (name = c25, rank=c!5, serial no = i4)
range of o is officers
oppend o officers (0.name = "GEORGE F. BROWN", o.rank = "GENERAL" , o.serial-no = 975402)
append to officers (0.name= "HAROLD W.GLENN" , 0.rank = “LIEUTENANT", 0.eerial-no =132884)

RELATION : PERSONNEL - ADOR
DOMA!INS : NAME (TYPE = CHARACTER, LENGTH = 25)
STATE (TYPE = CHARACTER , LENGTH = 4)
TUPLES IN PERSONNEL - ADDR RELATION :
NAME STATE

ALVIN M. ALLEN CcoLo
GEORGE F. BROWN CA
HAROLD W. GLENN MASS
JOHN D. LYONS ALA
JAMES J. SMITH TEX
PETER L. WILLIAMS ILL

QUERY . MAKE ANEW RELATION CONSISTING OF ALL OFF ICERS AND THEIR STATE LOCATION

COURSE OF ACTION: FIND THE TUPLES IN THE PERSONNEL-ADOR RELATION WHICH
MATCH THE DOMAIN "NAME" IN THE OFFICERS RELATION .
CREATE A NEW RELATION WITH DOMAINS "NAME" ,"STATE" AND
"RANK" USING THE MATCHED TUPLES.
INGRES QUERY STATEMENTS FOR CREATING NEW RELATION:

range of o is offiters

range of p is personnel -addr

retrieve into officers -addr (0.name, p.state ,o.rank)

where o0.nome = p. nome

NEW RELATION . OFFICERS - ADDR
DOMAINS . NAME (TYPE = CHARACTER, LENGTH = 25)
STATE (TYPE = CHARACTER,LENGTH = 4)
RANK (TYPE= CHARACTER,LENGTH = 15)
TUPLES IN OFFICERS - ADDR RELATION :
NAME STATE RANK

GEORGE F BROWN CA GENERAL

HAROLD W GLENN MASS LIEUTENANT
JAMES J. SMITH TEX COLONEL

Figure | SAMPLE RELATIONSHIP BETWEEN RELATIONS

12

R—— i o —

Integrity protection involves maintaining the credibility of
data in a relation. Several methods have been designed such as
normal forms [22] and the assignment of integrity conditions on a
set of domains. Integrity conditions may specify that a value in
column | be greater than O or that the value in column 2 be equal to
"Brown". Integrity protection, as applied to relational data
management systems, resembles a set of consistency conditions.

-

DESCRIPTION OF INGRES DBMS

Under INGRES, a user has a data base consisting of relations.
i ; . The data base exists as a UNIX directory created by INGRES; each

i relation is a UNIX file maintained by INGRES. Relations may be

! created by the direct input of data to the relation file or by

HE employing INGRES queries to retrieve information from other
relations.

R

e A user is able to access the tuples and domains of an INGRES
ki relation using the query language, QUEL, which has the capability of
i.' retrieving, inserting, and updating tuples or sets of tuples. The
versatility of these operations is enhanced by the additional use of
apgregate and functional expressions, that can involve arithmetic,
logical, or comparison operators, over a set of tuples. Views,
integrity control, and protection constraints governing relations
are not supported in INGRES Version 5.1 which was used for the
Secure INGRES implementation, but these primitives are expected in
future versions of INGRES.

Views would be implemented similarly to the definition of views
in a relational data base. Integrity control would be established
by having a user enter an integrity assertion that is composed of
QUEL qualification clauses to be applied to query interactions
updating a relation. An example of an INGRES integrity constraint
is:

range of p is personnel /* declare the relation in use */

E 1 integrity constraint is
p.name != "BROWN" and p.salary < 2000

LS ST S i i 5o sy oAbl

In this example, further transactions on the '"personnel" relation,
; that involve tuples whose "name'" domain is "BROWN" or the "salary"
i domain is greater than 2000, would not be executed because of the
enforcement of the integrity constraint. Protection constraints
would be handled similarly to integrity control in that
qualifications would be added to the user’s query interactions.

13

When INGRES is invoked, a collection of UNIX processes is
created and the appropriate interprocess communication is
established. A process, as defined in UNIX, is an address space
which has a user identifier and is the unit of work scheduled under
UNIX. A process may spawn or 'fork'" subprocesses to execute
programs. The internal design of INGRES relies on a four-process
structure. The processes interact one~dimensionally as shown in
Figure 2.

,J?3733||

USER
TERMINAL

TERMINAL PARSER QUERY
MONITOR PROCESSOR

Figure 2. INGRES Process Structure

In the process structure shown in Figure 2, commands are passed
to the right and retrieval information or error messages are
returned to the left. Information is passed through UNIX data
pipes, which are inter-process channels. The processes are
synchronized so that, for example, a process must wait for a
response from a process to the right before accepting information
from a process to the left. Internally, specific pipes are
designated as communication routes for passing data between
processes. Each process knows the names of the pipes over which to
send or wait for data. A file descriptor is created for each
defined pipe and is the identifying name for the pipe.
Communication is established by having one process read data using
the file descriptor of the same pipe in which another process is
writing data.

14

UTILITY
COMMANDS

Each process is concerned with a specific task. Process 1
monitors the terminal activity of a user in building a set of INGRES
queries for user execution. Process 2 translates the queries by
using the YACC (Yet Another Compiler-Compiler) translator available
under UNIX. A comprehensive translator is produced by utilizing the
YACC tables with the parse table interpreter and locally-supplied
lexical analysis. The resulting string of tokens is passed to
Process 3.

In Process 3, the routines for the major INGRES commands,
"retrieve", "append", ''delete'", and 'replace', are executed. The
"retrieve' command is the basic command for accessing tuples in a
relation. "Retrieve' will fetch all tuples that satisfy the
specified conditions given by a user and either display the tuples
on the terminal or store them in a new relation. Tuples may be
added to a relation by using the "append" command. Qualifying
conditions may also be specified in the "append'" command for
selecting the tuples. Conversely, tuples are removed from a
relation with the "delete" command. The '"replace'" command allows a
user to change the values of the data elements in a specific domain,
which satisfy given conditions. For example, assume a relation
exists called "employee' that contains the domains '"salary" and
"division". If the "salary" of all employees in '"division 7" needs
to be increased by ten percent, the "replace'" command will change
the appropriate salaries.

Additional routines for the utlity commands, "create', "copy",
"destroy", "help", "index'", "modify', "print", '"range'", '"save", and
"sort'" reside in Process 4. This process accepts the token strings

of a command not executed in Process 3. Briefly, these commands
involve:

a. creating a new relation (create),

b. copying data from a UNIX file into an INGRES relation
(copy),

c. deleting an existing relation (destroy),

d. providing information about how to use INGRES (help),

e. creating a secondary index on an existing relation to make
retrieval and update operations on the relation more

efficient (index),

f. converting the storage structure of a relation (modify),

15

g+ printing the contents of a relation (print),

h. declaring a relation and its variable for use in a query
(range),

i. saving a relation until a certain date (save), and
j+ sorting a relation into ascending order (sort).

Certain commands in INGRES may be executed only from the UNIX
shell, thus not requiring the INGRES monitor. INGRES data bases are
created and deleted from the UNIX file structure using,
respectively, the commands "creatdb"” and "destroydb". The command
"ingres" invokes the data management system. Data for the "copy"
utility may be formatted using the "format" command. The contents
of a relation are printed without having to enter INGRES by
executing the "printr" command. Lastly, if an INGRES or UNIX system
crash occurs, the '"restore'" command removes any extraneous
information from INGRES data bases.

The INGRES file structure can be represented as a sub-tree of
the UNIX system. Six directories, which descend from a special root
directory owned by the UNIX user "ingres'", form the main structure.
Figure 3 illustrates this file structure. The contents of each
directory will be briefly described. The directory named "files"
contains initialization files for spawning the four INGRES processes
and other INGRES command information needed by the system. An
"authority" file in this directory exists for maintaining a list of
users who are allowed to create INGRES data bases.

All data bases are created off the '"datadir" directory.
Essentially, an INGRES data base takes the form of a UNIX directory.
Descending from a data base directory are the system relation files,
used by the INGRES processes, and the user relations files created
by either the owner of the data base or other users. Each relation
is created as a separate UNIX file. Under INGRES, relations created
by the data base owner can be accessed by any other user; other user
relations are not shared. An administration data file also exists
which contains data base initialization information.

The "bin'" and "source" directories are comprised, respectively,
of the binary and source code files. The libraries needed for
developing new binary modules are found in the "lib" directory. The
"tmp” directory has data files designated for use as workspace areas
with the terminal monitor vrocess. The complete set of
documentation for INGRES is contained in the "doc" directory.

16

LNOAV 3¥NLONYLS 3714 S3IWONI € inbig

SNOILYI3¥ SNOILVI3H SNOILVI3Y
¥3snN Y3NMO 907ViVD
H3HIO0 3sveviva W31SAS

SR B
00 04 040 B

3002 3000 NOILVZITVILINI
NOILVINIWNO0A S31¥vasin 30Vd4SHYOM 324N0S AMUNIS W31SAS

\|>J

-0 0 0 &= -] O-0 00k

17

L ,

Under Secure INGRES, the basic file structure remains the same
as previously described. Obviously, the addition of classification
levels for each directory was incorporated into the structure. The
six main directories are created at the "unclassified" security
level. For the prototype secure INGRES system, the integrity level
and categories associated with all directories have been set to null
or zero. It is a necessity that the "datadir" directory be at the
"unclassified" security level in order to allow the creation of data
base directories at any access level. The mandatory access level of
a data base directory is determined by the type of information a
user plans to enter in the data base.

INCOMPATIBILITIES OF INGRES WITH SECURE UNIX

In adapting INGRES to run under the Secure UNIX Operating
System, it was necessary to study the dissimilarities between UNIX
and Secure UNIX that could affect the operation of INGRES. Several
features of the UNIX system used by INGRES were found not to be
supported in the Secure UNIX environment. The "setuid" mechanism
used by INGRES to control the access of users to INGRES data files
was eliminated in Secure UNIX. Due to a change in format of
directories, the UNIX "fstat' and "stat" system calls, which produce
status reports of UNIX files, are different under Secure UNIX. 1In
order to better understand the setuid and super-user mechanisms, a
discussion of the protection policy of UNIX is presented.

The UNIX protection policy is based on the definition that a
file has assigned access privileges for specified groups of users on
the system. The users of a file are divided into the following
categories: 'user", the owner of the file, '"group", a pre-defined
set of users in which the owner is a member, and "other", the
remaining set of users. Discretionary protection is maintained by
checking the access privileges of the "mode" of a file, which
designates some combination of "read", "write", "execute'", or
"special execute" access for each of the categories "user", '"group",
and "other". '"Special execute" allows a user to execute a program
file with the privileges of the owner of the file without conferring
arbitrary privilege to the invoking user. Specifically, the user
identification of the current user is temporarily changed to the
owner of the file. This ability, called the "set-user-1d" or
"setuid” mechanism, provides the means for users to manipulate files
accessible only via special programs.

Setuid Concept

INGRES makes extensive use of the "set~user-Id" mode to protect
the integrity of the INGRES data base internal structure. All data

18

files accessed by the INGRES system software are owned by the UNIX
user "ingres". The discretionary protection mode for these files is
"read-write for owner, no other access'". INGRES commands are also
owned by the user "ingres' with the mode of the command files set to
"special execute, no other access'. Users executing INGRES
commands, in effect, assume the access privileges of the user
"ingres" until the command is completed. Under UNIX, the system
call "setuid" is invoked so that INGRES processes are operating
temporarily with the user-1d of "ingres".

In the Secure UNIX environment, the "setuid" and '"setgid"
system calls are not implemented because they can permit a
compromise of security. With the setuid feature, a user process is
able to obtain information that it might not be allowed to access,
if its real user/group identity was checked for discretionary
privilege. This same restriction is applied to the '"super-user"
concept. A super-user can circumvent all access controls designated
by users for their files. He can even change the owner of a file.
Security contraints would be violated under these conditions;
therefore, the super~user and setuid mechanisms are not supported.

To create an INGRES module that can be run without the setuid
feature, the access privileges of INGRES object and data files were
changed to reflect the privileges for a 'group" of INGRES users. A
user must be in the same group in which the user "ingres' belongs in
order to run the complete set of INGRES commands. In effect, INGRES
data files have 'read-write'" permission for the owner of the file
and any users in the owner’s group. Other users of the system, not
in the "ingres" group, can execute INGRES commands that require only
"read" access of INGRES data files.

The modes of the object files, which have the '"special execute"

designation for the setuid feature, were changed to give '"read-
write-execute'” access to "ingres', the owner of the file, and
"read-execute" or "execute-only'" access to the "group" and "other"
users of the program file. The new modes for the INGRES object
files are listed in Figure 4.

System Calls

The other area of incompatibility involves the different format
for a directory file entry. Two system calls, "stat" and "fstat",
reference the information in a directory and are dependent on its
format. Under Secure UNIX, the system calls return additional
information into a buffer area defining the status of a file. The
inode number of the file has been replaced by a unique identifier
because, under Secure UNIX, the inode table is non-existent. The
source code for two INGRES programs, "access/batch.c" and

19

INGRES DISCRETIONARY ACCESS
FILE NAME MODES FOR
OWNER GROUP OTHER

CREATDB RwWX X X
DESTROYDB RWX X X
INGRES RWX RX RX
OVERLAY RWX X X
OVERLAY 8 RWX X X
OVERLAY E RWX X X
OVERLAY F RWX X X
OVERLAY N RWX X X
OVERLAY R RWX X X
OVERLAY X RWX X X
PARSER RWX X X
PRINTR RWX X X
QRYPROC RWX X X
RESETOB RWX RX RX
RESTORE RWX RX RX

LEGEND

R =READ ACCESS
W=WRITE ACCESS
X = EXECUTE ACCESS

20

Figure 4 DISCRETIONARY ACCESS MODES FOR SECURE INGRES OBJECT FILES

"access/heapsize.c", was changed to adjust for the different
directory structure.

21

SECTION 1V

SECURITY LEVELS FOR THE INGRES DBMS

INTRODUCTION

The imposition of non-discretionary (mandatory) security
constraints on an INGRES data base is the main focus of this task.
In the Secure UNIX environment, a non-discretionary access level,
composed of security and integrity constraints, is required by the
security kernel for all files. The security kernel applies the
priniciples of the "*-property'" for secure computer systems [18] in
validating user requests of files at various access levels.
Concerning directory file creation, the "*-property" concept allows
a user to create a directory only at an access level equal to or
greater than the current level at which the user is logged in.
Mandatory and discretionary access checking is always performed when
a file is created or accessed.

The design of the Secure UNIX file system requires that data
files in a directory assume the same mandatory access level as the
directory. Consequently, the security level of an INGRES relation
(a data file) must be at the same level as its data base (a
directory). Although this limitation does reduce the utility of the
secure data base system, the coordination of INGRES with Secure UNIX
necessitates the mapping of relations in this manner. Adhering to
these restrictions, a user is able to perform multilevel operations
on relations in the INGRES data base directory structure.

DESIGN OF SECURE INGRES DATA BASE SYSTEM

In re-designing INGRES to incorporate security levels, it was
necessary to introduce two capabilities into the system:

a. the ability to create data bases at different security
levels, and

b. the ability to create and retrieve relations at different
security levels.

If a user wants to create or retrieve a relation consisting of
tuples from relations at different security levels, certain
restrictions under Secure UNIX limit the method of operation.
Foremost, concerning access levels, the files in a directory assume
the same access level as the directory. Similarly, INGRES relations

22

in a data base are required to have the same classification as the
data base. For example, when operating in a secure environment, a
relation containing '"top secret" information cannot be found in a
data base that is classified as '"confidential". As a result of
these security restrictions, a user must create a data base at each
security level of the information in use.

Applying these same security principles, a user is able to
"read" information from a file at a lower security level than his
current level established at login time. As a result, a new
relation can be created by combining information (tuples) obtained
from relations in data bases at access levels equal to or less than
the security level of the data base in use.

The design modifications for creating a secure data base
directory were easily adapted into the INGRES system due to the
dependency on the Secure UNIX design, which allows the creation of
directories at different security levels. With the additiom of
security levels, the INGRES system directories, which are separate
from the '"datadir" branch of the INGRES sub-tree, must be set to the
lowest classification level of the system so that the system
programs in these directories can be accessed/executed by users
operating in data bases of any security level.

USER INTERFACE

The term "user interface'" implies the appearance of a system
that is presented to a user. It involves anything a user types or
sees on a terminal.

Overview

The Air Force Data Services Center Multics and the Military
Message Experiment are two examples of projects that have spent a
considerable amount of time and effort in evaluating the effect of
security on user interfaces. Pertaining to relational data base
systems, System Development Corporation did a study of a secure DMS
for the secure Multics system [3]. To incorporate non-discretionary
security into the data base, the domains of a relation were defined
to have different security levels. Each field of data in the
relation is stored in separate segments at the classificaton level
of the domain. The study mentioned that for certain functions such
as the creation of segments, a user process would be required to
operate at all levels at which data is stored. In order for a
practical user interface with multilevel domains in a relation, the
study suggested that a multilevel daemon process be added to the

23

e e e

operating system. The daemon process would handle the functions
that operate on multilevel domains of data.

Contrarily, the 1.P. Sharp Associates Ltd. study recommended
that security levels be assigned to individual relations. Because
protection levels associated with tuples or domains can cause
restrictions on query activity, the relation assignment proved to
involve less problems while sctill preventing unauthorized access

[6].

Secure INGRES Requirements

In Secure INGRES, relations assume the access level of the data
base in which they exist. This restriction is necessary due to the
structure of the secure file system under Secure UNIX. Concerning
the user interface, the addition of security levels and the
adjustments for Secure UNIX compatibility are relatively transparent
to a user. It was necessary to change the format of two INGRES
commands to accommodate security levels.

The command for creating a new data base, 'creatdb", was
modified to include an access level for data bases at higher
security levels than the current level. The "-a'" option is used if
the access level of the data base should be created at the current
level of user login. The format of the command is:

creatdb "database-name'" {"access-level" or -a }

The '"database-name' is limited to fourteen characters in
length. The "access-level'" is comprised of an integrity level, a
security level, an integrity category, and a security category [23].
The principles of the "*-property'" form the basis for access
checking by the security kernel on the "access-level'" entered for
this command. User input for the different parts of the "access-
level” is highly dependent on the security procedures of the
installation using Secure INGRES and oun the rules of the kernel.
Secure UNIX supports under its mandatory security policy sixteen
security classifications and sixty-four security categories. The
mandatory integrity policy is developed from a maximum of sixteen
integrity classifications and eight integrity categories.

In an actual operation environment, the "access-level" would
probably consist of specific characters, which represent the
different security classifications and categories. A system routine
would look up the characters in a pre-defined symbol table and
translate the characters into the appropriate "bit" representation
required for the access structure under Secure UNIX. For the Secure
INGRES prototype system, the classification and categories are

24

represented by integer numbers, whose format is determined by the
structure of the access level. The security and integrity levels
are each represented by a number not greater thanm 15; the smaller
the number, the lower is the classification or integrity level. The
integrity category 1s represented by an integer number not greater
than 255, because the size of the category is limited to eight bits,
as defined in the access structure. Four numbers are necessary to
represent the security category. The numbers chosen to represent
the integrity and security categories have no particular
significance in relation to a protection policy. For any future
Secure INGRES applications on Secure UNIX, the priorities and degree
of protection would be established, and the elements which comprise
the access level would be more realistically defined.

The second command affected by the security changes is the
"range'" statement. When INGRES is invoked, the command is used to
declare variables that are referenced in subsequent INGRES queries.
In the "range" statement, a user defines a variable to be associated
with a specific relation; thereafter, all query references to that
variable involve the tuples in the associated relation. The format
of the "range' statement 1is:

range of '"variable" is '"relation-name"

1f a user wants to access a relation that is not in the current
data base, he must start the "relation-name" with a slash, "/",
followed by the data base name in which the relation resides,
followed by another slash, and then the name of the relatiom.
Examples of the two types of range statements follow:

range of varl is rell
range of var2 is /dbname/rel2

Secure YUNIX performs the necessary mandatory and discretionary
access checks when the relation file is opened for query processing.

To better illustrate how the above changes affect the
interaction of a user at a terminal, a sample user session is
presented involving these changes. Assume a user has logged in at
the "secret" classification level and invokes INGRES using the data
base "secr”, which is defined at a '"secret" classification level.
The user wants to build a new relation using information from a
relation named "type" in the "secr' data base. However, he would
also like to access data from a relation named "acro", which is an
"unclassified" relation in the "unclassifed" data base named "uncl".
Figure 5 shows the configuration of data for the relations. The
"acro" relation has two domains named "id" and "acro'"; similarly,
the "type" relation has "id" and "type'" domains., The purpose of the

25

query 1is to find the tuples in the two relations that have the same
"id" and select from those matched pairs of tuples a subset of
tuples where the "type" domain is equal to "orgz". The resulting
tuples are placed in a new "secret" relation called "orgz". Only
the domains "id" and "acro" are defined for the tuples in this
relation. A user would enter the following INGRES commands to
achieve the described results:

range of rl is /uncl/acro /* declare that the relation */
/* is not in the current db */
range of r2 is type /* relation in current db */
retrieve into orgz(rl.id,rl.acro) /* specify new relation */
/* and its domains */
where rl.id = r2.id /* specify conditions */

and r2.type = "orgz"

26

oo < B s

UNCLASSIFIED (U) RELATION ACRO
IN DATABASE UNCL (U)
DOMAINS

1D ACRO

ESD
UHF
AFSC
AWACS
TDMA
SATIN

TUPLES

0O Ds N -

SECRET (S) RELATION TYPE
IN CURRENT DATABASE SECR (S)
DOMAINS

1D TYPE

ORGZ
TECH
ORGZ
PROJ
TECH
PROJ

TUPLES

o adun -

RESULT .
NEW SECRET (S) RELATION ORGZ

IN CURRENT DATABASE SECR (S)

DOMAINS
1D ACRO
!
TUPLES it
o 3 AFSC

Figure 5 EXAMPLE OF CREATING "SECRET" RELATION
FROM "SECRET" AND "UNCLASSIFIED" RELATIONS

27

SECTION V

IMPLEMENTATION DETAILS

IMPLEMENTATION OVERVIEW

The implementation of a secure INGRES data base management
system proved to be a task devoted more to the understanding of how
INGRES works than the re-coding of INGRES programs. All data base
systems have a tendency to be large and cumbersome, and INGRES is no
exception. The four-process structure of INGRES may contribute to a
sense of logical program flow of the system, but, in effect, one
process can not execute the entire set of INGRES program modules.

In Version 5.1 of INGRES, which was used to develop the prototype
model, a process runs in approximately %4K bytes of core memory.

The INGRES system needs four processes, or the equivalent amount of
memory space, in order to run the binary program modules. The total
size of the INGRES DBMS is close to 275K bytes of memory. The code
for the process running the utility commands is divided into overlay
programs in order to conserve execution space. Future versions of
INGRES need five processes to run the code. Besides the INGRES
query modules which run under the INGRES monitor, code exists for
six INGRES commands that are executable only from the UNIX shell.
These commands range in size from 23K bytes for the '"creatdb"
program to 3K bytes for the "format' code. The Secure INGRES
modules had relatively few code changes; thus the new program sizes
of Secure INGRES vary only slightly compared to INGRES modules. The
exact sizes of the program modules for both INGRES and Secure INGRES
are found in Figure 6.

The documentation, provided with INGRES, was limited in its
description of the many routines and subroutines and their
relationship to the process structure of INGRES. Additional program
details would have been beneficial in tracing the effects of
modifying the '"range'" statement in INGRES. The INGRES code for
version 5.1 is unevenly written, even though the source programs are
coded extensively in '"C'", which is a highly structured language. A
new version of INGRES (6.0) has been released, which, purportedly,
has better documentation; the source code has also been completely
re-written in a more standardized manner.

MODIFICATIONS TO INGRES CODE

A detailed description of the changes to the INGRES code is
presented so that Secure INGRES data management systems can be

28

694

1A - 51

r

® DESIGNATES PROGRAM (S EXECUTABLE
ONLY FROM THE UNIX SHELL

INGRES SECURE INGRES
PROGRAM SIZE IN SIZE IN
NAME FUNCTION BYTES BYTES
gﬁf ﬁi — |
CREATOS ™ COMMAND TO CREATE 18,968 4,988
AN INGRES DATA BASE P33 g iy s
% | COMMAND TO DELETE
DESTROYDB AN INGRES DATA BASE | __7,934 7,640
LANGUAGE PROCESSOR TO
EQUEL HANDLE QUEL STATEMENTS 28,870 28,870
EMBEDDED IN "C" LANGUAGE
COMMAND TO CONVERT
FORMAT ™ FREE FORMAT FILE TO FIXED 3,440 3,440
FORMAT FOR "COPY" UTILITY
COMMAND TO INVOKE
»
INGRES INGRES DBMS 9,370 22,680
CONTROLS OVERLAYING OF
GURRLAY UTILITY PROGRAMS Sl 9,800
OVERLAYS UTILITY COMMANDS
49 4
OVERLAYB HEL RS, TR 24,772 25,18
OVERLAYS UTILITY COMMAND
OVERLAYE i 29,314 29,790
OVERLAYS UTILITY COMMAND
OVERLAYF "INDEX" AND BATCH UPDATE 27,824 28,236
MODULE AEHE
OVERLAYN OVERLAYS NULL COMMAND 9,862 9,862
OVERLAYR ?:i::fys SRR e 21,772 22,248
A CER e o A A PR O
OVERLAYS UTILITY COMMANDS
__ovs RLfﬁ 'CREATE", "DESTROY" "MODIFY" | 46,900 47,312
MODULE USED BY PROCESS 2 |
I shaias | B AT TR kel I
COMMAND TO PRI TENT I
PRINTR™ NSRS TS TDINT SORIRNES 17,930 17,848
b B | OF RELATION e v ety e T
QRY PROC SSUSULE VREN §Y PORIVERS. 55,532 56,812
FOR QUERY PROCESSING : S
COMMAND TO RESTORE
NESTORE DATA BASES AFTER CRASH 3,328 23,822
=y
TOTAL SIZES 385,714 388,462

Figure 6 PROGRAM SIZES OF INGRES AND SECURE INGRES

29

el i

easily constructed in the future. The changes to the INGRES code
can be divided into four areas. The code was impacted by:

a. removing the "setuid" feature,
b. changing the format of a directory entry,
c. adding security levels, and

d. allowing a user to query a relation not residing in the
current data base.

When the "setuid" feature was eliminated, the discretionary
access permissions of certain INGRES files had to be adjusted to
allow users in the "ingres" group and other users of the system the
ability to access these files, necessary for running under the
INGRES system. In general, the user "ingres' and members of the
"ingres'" group have '"read-write'" access to most data files; other
users have only 'read" access to these files. Specifically, in a
data base directory, the system catalog files and any other
relations, created by the user "ingres'" or users in the "ingres"
group, have '"read-write" access. The "admin" file in the data base
has "read-write'" access for the owner of the data base and only
"read" access for the owner‘’s group and any other users. In the
INGRES source code, when these files are created, the mode used in
the "creat" system call was changed to reflect the new access
privileges. The following source programs were modified:

"support /creatdb.c", "support/ccreate.c", '"dbu/create.c", and
"dbu/hash.c".

Two system files, "files/authority" and "files/cdbi'", also.had
their discretionary mode changed: the "authority" file had "read"
access extended to users in the "ingres" group, and for the "cdbi"
file, "read" access was given to both users in the "ingres" group
and other users. The "cdbi" file, which contains the formats of all
INGRES structures, is used in the initialization of the system
catalogs in a data base. The "setuid" and "setgid" system calls
were removed from the programs: "support/creatdb.c" and
"support/ingres.c".

The other incompatibility, which concerns a Secure UNIX
directory entry containing different information than a UNIX entry,
affected INGRES only in circumstances when a reference was made to
the elements in the directory entry. Two system calls, "fstat" and
"stat", give the status of a file by copying the information found
in the directory into a buffer area. These calls are used in INGRES
programs, "access/heapsize.c" and "access/batch.c", and the buffer
structures defined in the programs had to be adjusted to account for

30

S

s R A A L e S

the twenty-three word buffer size of Secure UNIX instead of using
the eighteen word buffer declared in UNIX. The "access/batch.c"
program accesses a particular element of the buffer, the inode
number, and, because inodes are no longer supported by Secure UNIX,
a portion of the code had to be re-written using the new information
in the entry to achieve the correct results.

The addition of security levels affects, in an obvious sense,
the user input when creating a data base. Because all data bases
are directories under Secure UNIX, a mandatory access level is
necessary when a directory is created. The '"support/creatdb.c"
program, which creates a data base, was modified to accept the
additional user input specifying that a data base be created either
at the user’s current access level or at a higher level. The
program interprets the input and executes the system call, "mknod",
with the appropriate parameters, to create the directory for the
data base. The source code was simplified by removing the
unnecessary spawning of a child process to run the "mkdir" user
command, which executes a '"mknod" system call. The
"support /destroydb.c" program, which deletes a data base, was also
modified, similarly, by replacing the user command "rmdir" with a
direct call to the system procedure 'unlink'". It became apparent
that other enhancements to the INGRES code could have been made,
which probably would affect execution speed, but it was not the
intended goal of the project to analyze all the INGRES modules for
code improvements.

The initialization of the system catalogs for a data base is
also executed in the "support/creatdb.c" program. If a data base is
created at a higher access level than the user login level, security
policy prohibits any writing into the directory, ie., creating a i
file in thie directory, until a user is logged in at the higher
level. In INGRES, the system catalog files are established when the
data base directory is created. If this same procedure was followed
in Secure INGRES, the initialization of the system catalogs for a
data base directory created at a higher access level would result in
a security violation. To solve the conflict, the source code for
creating the initialization and system catalog files of a data base,
was moved to the program 'support/ingres.c".

The "support/ingres.c'" program contains the source code for the
INGRES command, "ingres', which is executed from the UNIX shell to
invoke the INGRES data base management system. In order for a user
to create a relation in a data base, he issues the command "ingres"
with a data base name. With the revised program code of "ingres",
the first user of a new data base must be the owner of the data
base. This procedure is required so that the system files of the
data base are initially established with the correct format, ie. the

il

31 :

e -4

e

I S

§
§
i

system files must have the same owner as the data base. In
addition, the owner of the data base must be logged in at the proper
access level for writing in the data base. Other users will be
denied access to the data base until the system files are
initialized.

Basically, the code changes to the "ingres'" program involve
first checking if the system files exist by trying to open a known
system file called "attribute". If the "open" fails, the program
assumes the system catalogs have not been created and proceeds to
check if the user of the INGRES process is the owner of the data
base. If it is not the owner, the program returns to Secure UNIX,
notifying the user of the error; otherwise, the system files are
created using the code that was previously in "support/creatdb.c"
for creating catalogs, and the "ingres" program continues with the
spawning of the four INGRES processes. If the system catalog
"attribute'" is opened, the "ingres' program assumes the system files
have already been created; the "attribute'" file is then '"closed" to
restst : the system to its initial state and execution resumes with
the spawning of INGRES processes.

When a user wants to query a relation that is not in the
current data base, he formats the '"range'" statement of INGRES to
include the data base name as part of the relation name. The data
base name is prefaced with a slash character and separated from the
relation name with another slash character. In INGRES, the program
"parser/range.c" stores the entire name into a range table. It is
necessary to have the entire name in the table to designate that the
relation exists in another data base. At this stage, the code
changes to INGRES programs involve defining a new constant called
"RANGNM" equal to thirty-one characters, which represents the
maximum number of characters allowed for a relation name, including
the data base name, in the range statement. The context file
"ingres.h" contains the new constant definition; in the context file
"parser.h", the structure for the range table is defined and the
length of the element, 'relnm'", in the structure must be changed to
"RANGNM". The program "parser/range.c" has routines which insert
the relation name into the range table and pass the name to the
query processor. Each reference to the length of the relation name
must be changed to the new length, "RANGNM".

The query processor uses two structures, 'rangv" and "lrangv'",
which contain references to the name of a relation. The structures
are defined in "qryproc/qryproc.h", and the length of the relation
name in these structures must be changed to "RANGNM".

When query processing is initiated, descriptive information
about an "opened" relation is stored in the sub-structure of the

32

"rangv" structure, called '"descriptor". The 'descriptor" structure
is filled with information obtained from the system catalogs, which
maintain information about all relations in the data base. A
relation is opened and its descriptor established during the
execution of the source program "access/openr.c'.

One argument passed to the "openr" routine is a relation name,
which is retrieved from the range table. With the Secure INGRES
changes, the relation name may include a data base name. The
argument must be re-defined so that its length is equal to '"RANGNM".
The previously defined argument "uniqid", is used as a local
variable to represent the name of the relation without the data base
name .

The source code of the "openr" program was modified to account
for a relation not in the current data base. A flag is set if the
data base is part of the relation name, and the relation name is
parsed into character strings containing the data base name and the
single relation name. The descriptor structure is then stored with
information about the relation obtained from the system catalogs.
The data base flag is always checked to determine if information is
retrieved from the catalogs in the current data base or a different
data base directory. Error messages are returned to a user if
information in a directory cannot be accessed. Lastly, the "openr"
routine opens the relation file and its file pointer is recorded in
the destriptor structure.

The basis of all query processing is the descriptor structure
which specifies how to access the tuples of a relation. Using the
descriptor for subsequent relation operations, it becomes
unnecessary to reference the system catalogs each time a tuple in a
relation is accessed; the descriptor structure for each relation
contains the appropriate information.

During query processing, a "strategy'" routine is called in an
attempt to limit the scan of a relation by determining a key, which
is used for subsequent access calls on the relation. Information in
the relation descriptor structure is used to help construct the key.
If the relation has been previously set up with keys by a user
executing the "index" command, the strategy routine uses the
"indexed" version of the relation. Information about the indexed
relation is found in the system catalog relation called "index". If
the relation is not in the current data base, the strategy routine
must use the "index'" catalog in the appropriate data base to
retrieve the correct information about the relation.

The source program of the strategy routine,
"qryproc/strategy.c', was modified to operate with relations not in

33

the current data base. The '"Sourcevar" element in the range table
specifies which relation is currently being accessed. If the
"relation id" in the range table has a data base name as part of its
relation name, then the appropriate "index'" system catalog for the
data base is opened, and its file pointer is stored in the global
variable "Sysindex". Later in the program, if the strategy routine
finds that a relation is indexed, then the correct "index" system
catalog is referenced using the variable "Sysindex'. When the
strategy key has been determined, the new information about the
relation is recorded in the descriptor named "Scanr’, which keeps
track of the relation being scanned. If the "Sysindex" variable has
been changed, it is restored to the file pointer of the "index"
catalog in the current data base.

Changes were also made to the "exactkey'" and 'rangekey"
routines in the strategy program. The second argument of these
routines, the relation name, may include a data base name, if the
relation for scanning is not in the current data base. The "xxsets
routine in the source file "qryproc/strat2.c" is called by both of
the keying routines and uses the second argument, the relation name,
to update the global variable "Scanr". Modifications were made to
this routine to adjust for a relation name that includes a data base
name. The argument is compared to the "Source'" relation name; if
the data base name is part of the argument, the "Source' name must
be prefaced with the current data base name in order for a correct
comparison.

34

srm g sn sy

i it il

e o
T

e

SECTION VI

CONCLUSION

An existing data base management system has been modified to
incorporate security controls, as defined by DoD security policies,
with the intention of operating the system cn a secure mini-
computer. The resulting product, a Secure INGRES relational data
base management system, can be executed under the Secure UNIX
Operating System and forms a basis for secure user interface
analysis and user application work plus aiding in performance
studies on the secure operating system.

At this stage, the Secure INGRES implementation is not
onerational. The programs for the Secure INGRES model have been
compiled, and the new system is theoretically ready to run.
Modifications to the INGRES DBMS to allow execution in the secure
environment Were made without extensive programming changes. Two
factors contributed to the relative ease in converting the system:

a, the INGRES DBMS is designed to run under the UNIX Operating
System, and

b. only a few incompatibilities exist between the Secure UNIX
Operating System and the UNIX Operating System that affect

i the execution of the INGRES system software.

Testing of the system has been delayed because the Secure UNIX
system is not yet operative. Once Secure UNIX is running, Secure
INGRES can be tested and completely debugged. At that time, the
issues of user interface and performance can be more thoroughly
addressed.

In retrospect, considerable time was spent in an analysis of
the relationship between the INGRES program modules. The lack of
adequate documentation and the poorly written source code made this
task more arduous than expected. Once a comprehensive knowledge of
INGRES was acquired, the task of re-designing INGRES for a secure
environment went smoothly and without difficulty.

The present user interface of INGRES could be improved in many
ways. On a purely functional level, INGRES should supply 1) a
prompt character, 2) better error messages to the user, 3) the
rubout character should be handled properly, and 4) a user should be
able to use the UNIX shell while executing under INGRES. A major
complaint about INGRES 1s the amount of time required to process a
query. Performance would probably improve if 1) batch-updating for

35

i

relations was removed resulting in query modifications being done
directly, 2) only one secondary index being allowed, 3) only heap
and hash storage files being supported, not ISAM, and 4) a more
efficient use of the "C" language being employed. In a specific
application environment, a better user interface could be achieved
by developing a set of pre-canned "C" routines, that would
internally access QUEL programs. The routines would be designed so
that a user could easily create queries defined for a particular
application.

Users of the Secure INGRES system must be acquainted with the
security policies enforced under the Secure UNIX system in order
that the operation of a user session run as smoothly as when
executing under INGRES. The access level of each Secure INGRES data
base must be remembered by a user when retrieving information from a
data base; otherwise, security measures may be violated resulting in
a disqualified data query. Overall, the changes in definition and
format of certain INGRES commands are minor; once a user becomes
accustomed to the Secure UNIX file system and, if he has a working
knowledge of INGRES, operating under Secure INGRES should be a
simple adjustment. Any user applications, developed under INGRES,
can also be run under Secure INGRES with only minor changes to
account for access levels:

The performance of the Secure INGRES system is obviously
affected, to some degree, by the additional security checks and
secure system controls that are necessary for a secure operating
environment. At this time, no detailed performance measurements
have been made. Considering the degree of modification and the
areas involved in the INGRES code, the effect of the changes to the
code upon the performance of Secure INGRES should be relatively
insignificant. Running in the secure environment is the major
factor that affects the evaluation of Secure INGRES performance.

The Secure INGRES data base management system is an effective,
software tool for diversified data manipulation of sensitive
information requiring security protection. It can also provide a
means for developing workbench programs to be used in performance
testing of secure operating systems. With future improvements to
INGRES system sof tware, a Secure INGRES system becomes a productive
addition to a secure operating system.

36

R

3‘

10.

REFERENCES

W.L. Schiller, "The Design and Specification of a Security
Kernel for the PDP-1145", ESD~TR-75-69, Electronic Systems
Division, AFSC, Hanscom AFB, Massachusetts, May 1975
(ADA011712).

J.L. Mack and B.N. Wagner, "Secure Multilevel Data Base
System: Demonstration Scenarios', ESD-TR-76-158, Electronic
Systems Division, AFSC, Hanscom AFB, Massachusetts, October
1976 (ADA032956).

Thomas H. Hinke and Marvin Shaefer, ''Secure Data Management
System'", RADC-TR-75-266, System Development Corporation,
Santa Monica, California, November 1975.

Gillian Kirkby and Michael Grohn, "On Specifying the
Functional Design for a Protected DMS Tool", ESD-TR-77-140,
1.P. Sharp Associates Ltd., Ottawa, Canada, March 1977.

Gillian Kirkby and Michael Grohn, "Validation of the
Protected DMS Specifications", ESD-TR-77-141, I.P. Sharp
Associates Ltd., Ottawa, Canada, April 1977.

Michael J. Grohn, "A Model of a Protected Data Management
System", ESD-TR-76-289, I.P. Sharp Associates Ltd., Ottawa,
Canada, June 1976.

J.C. Whitman, A. Bensoussan, P.A. Green, A.M. Kobzian, and
J.A. Stern, "Design for Multics Security Enhancements", ESD~-
TR~74-176, Honeywell Information Systems, 1974,

Stanley R. Ames, Jr., "User Interface Multilevel Security
Issues in a Transaction-Orientated Data Base Management
System', MIP-178, The MITRE Corporation, Bedford,
Massachusetts, December 1976,

J.D. Tangney, S.R. Ames, Jr., and E.L. Burke, ''Security

Evaluation Criteria for MME Message Service Selection',

MTR-3433, The MITRE Corporation, Bedford, Massachusetts,
June 1977.

Moshe M. Zloof, "Query-by-Example', Proc. 1975 National
Computer Conference, AFIPS Press, May 1975.

b g i35 A e

11.

12

13.

14.

15.

16.

17,

18.

19

20.

21.

REFERENCES (Continued)

Earl D. Sacerdoti, '"Language Access to Distributed Data With
Error Recovery'", Stanford Research Institute, Artificial
Intelligence Center, Menlo Park, California, February 1977.

G.D. Held, M. Stonebraker, and E. Wong, "INGRES - A
Relational Data Base Management System'", Proc. 1975 National
Computer Conference, AFIPS Press, 1975.

William Zook et. al., "INGRES - Reference Manual (Version
5)", University of California at Berkeley, Electronics
Research Laboratory, Memo. No. ERL-M585, April 1976.

M. Stonebraker and E. Wong, '"Access Control in a Relational
Data Base Management System by Query Modification', Proc. 1974
ACM National Conference, San Diego, California, November 1974.

M. Stonebraker and P. Rubenstein, 'The INGRES Protection
System', Proc. 1976 ACM National Conference, Houston, Texas,
October 1976.

M. Stonebraker, E. Wong, P. Kregs, and G. Held, "The Design
and Implementation of INGRES", INGRES Documentation from
University of California at Berkeley, December 5, 1975.

Dennis M. Ritchie and Ken Thompson, 'The UNIX Time-Sharing

System', Communications of the ACM, Volume 17, Number 7, July
1974, pp.365-375.

D.E. Bell and L.J. LaPadula, 'Secure Computer Systems",
ESD-TR-73-278, Volumes I-III, Electronic Systems Division,
AFSC, Hanscom AFB, Massachusetts, November 1973-

April 1974 (AD770768, AD771543, AD780528).

E.F. Codd, "A Relational Model of Data for Large Shared Data
Banks'', Communications of the ACM, Volume 13, Number 6, June
1970.

E.F. Codd and C.J. Date, "Interactive Support for Non- . :
Programmers, The Relational and Network Approaches", Proc.
1974 ACM-SIGFIDET Workshop on Data Description, Access and
Control, Ann Arbor, Michigan, May 1974. .

E.F. Codd, "Further Normalization of the Data Base

Relational Model'", Data Base Systems, Courant Computer Science
Symposium 6, Prentice Hall, Englewood Cliffs, New Jersey,
1972, p. 33-64.

38

22.

23.

REFERENCES (Concluded)

D.C. Tsichritzis and F.H. Lochovsky, Data Management
Systems, Academic Press, New York, 1977, Chapters 2 and 7.

K.J. Biba, "Integrity Considerations for Secure Computer
Systems', ESD-TR-76-372, Electronic Systems Division,
AFSC, Hanscom AFB, Massachusetts, April 1977 (ADA039324).

39

e de s

